The atmospheric modeling system is the foundation of accurate balloon trajectory prediction. It provides comprehensive atmospheric state data including temperature, pressure, density, winds, and humidity from the surface to the edge of space. The system employs a sophisticated hierarchy of data sources, from real-time weather APIs to validated atmospheric models, ensuring global coverage with optimal accuracy.
The simulator implements a sophisticated fallback system to ensure atmospheric data is always available:
def select_atmospheric_data_source(lat, lon, alt, time):
"""
Intelligent data source selection based on availability,
location, and quality metrics
"""
# Try primary real-time sources
if openweather_api.is_available():
data = openweather_api.fetch(lat, lon, time)
if data.quality_score > 0.8:
return data, "OpenWeather API"
# US-specific high-quality data
if is_within_us(lat, lon) and noaa_api.is_available():
data = noaa_api.fetch(lat, lon, time)
if data.quality_score > 0.9:
return data, "NOAA Weather API"
# Global forecast model
if gfs_nomads.is_available():
data = gfs_nomads.fetch(lat, lon, time)
if data.quality_score > 0.7:
return data, "GFS NOMADS"
# Fallback to standard atmosphere
return standard_atmosphere.calculate(lat, lon, alt), "US Standard Atmosphere"
The US Standard Atmosphere 1976 provides a mathematical model of Earth's atmosphere based on average conditions at mid-latitudes. It defines temperature, pressure, and density as functions of altitude through a series of atmospheric layers.
The atmosphere is divided into seven distinct layers, each with its own temperature gradient:
Layer | Altitude Range | Name | Temperature Profile | Lapse Rate |
---|---|---|---|---|
1 | 0-11 km | Troposphere | $T(h) = 288.15 - 6.5h$ | -6.5 K/km |
2 | 11-20 km | Tropopause | $T(h) = 216.65$ | 0 K/km |
3 | 20-32 km | Lower Stratosphere | $T(h) = 216.65 + 1.0(h-20)$ | +1.0 K/km |
4 | 32-47 km | Upper Stratosphere | $T(h) = 228.65 + 2.8(h-32)$ | +2.8 K/km |
5 | 47-51 km | Stratopause | $T(h) = 270.65$ | 0 K/km |
6 | 51-71 km | Lower Mesosphere | $T(h) = 270.65 - 2.8(h-51)$ | -2.8 K/km |
7 | 71-86 km | Upper Mesosphere | $T(h) = 214.65 - 2.0(h-71)$ | -2.0 K/km |
Pressure is calculated using the barometric formula, which differs for isothermal and gradient layers:
Air density is calculated from the ideal gas law:
class USStandardAtmosphere1976:
def __init__(self):
# Layer definitions: (h_base[km], T_base[K], lapse_rate[K/km])
self.layers = [
(0, 288.15, -6.5), # Troposphere
(11, 216.65, 0.0), # Tropopause
(20, 216.65, 1.0), # Lower Stratosphere
(32, 228.65, 2.8), # Upper Stratosphere
(47, 270.65, 0.0), # Stratopause
(51, 270.65, -2.8), # Lower Mesosphere
(71, 214.65, -2.0), # Upper Mesosphere
]
# Physical constants
self.g0 = 9.80665 # m/s²
self.M = 0.0289644 # kg/mol
self.R = 8.3144598 # J/(mol·K)
self.P0 = 101325 # Pa (sea level)
def get_temperature(self, altitude_km):
"""Calculate temperature at given altitude"""
for i, (h_base, T_base, lapse_rate) in enumerate(self.layers):
if i == len(self.layers) - 1 or altitude_km < self.layers[i+1][0]:
return T_base + lapse_rate * (altitude_km - h_base)
# Above 86 km
return self.layers[-1][1]
def get_pressure(self, altitude_m):
"""Calculate pressure at given altitude"""
h_km = altitude_m / 1000.0
# Find current layer
layer_idx = 0
for i in range(len(self.layers) - 1):
if h_km >= self.layers[i+1][0]:
layer_idx = i + 1
else:
break
# Calculate pressure from sea level up through each layer
P = self.P0
h_current = 0
for i in range(layer_idx + 1):
h_base, T_base, lapse_rate = self.layers[i]
h_top = self.layers[i+1][0] if i < len(self.layers)-1 else h_km
h_top = min(h_top, h_km)
if abs(lapse_rate) < 1e-10: # Isothermal
P *= np.exp(-self.g0 * self.M * (h_top - h_base) * 1000 / (self.R * T_base))
else: # Gradient layer
T_top = T_base + lapse_rate * (h_top - h_base)
P *= (T_top / T_base) ** (-self.g0 * self.M / (self.R * lapse_rate * 0.001))
if h_top >= h_km:
break
return P
OpenWeather provides global atmospheric data with 3-hour forecasts and current conditions:
/data/2.5/weather
- Current weather data/data/2.5/forecast
- 5-day forecast with 3-hour steps/data/2.5/onecall
- Comprehensive weather dataclass OpenWeatherAPI:
def __init__(self, api_key):
self.api_key = api_key
self.base_url = "https://api.openweathermap.org/data/2.5"
def fetch_atmospheric_profile(self, lat, lon, time=None):
"""Fetch complete atmospheric profile from OpenWeather"""
# Get current conditions
current = self._fetch_current(lat, lon)
# Get forecast data for vertical interpolation
forecast = self._fetch_forecast(lat, lon)
# Build atmospheric profile
profile = AtmosphericProfile()
# Surface conditions
profile.add_level(
altitude=current['main']['grnd_level'] if 'grnd_level' in current['main'] else 0,
temperature=current['main']['temp'],
pressure=current['main']['pressure'] * 100, # hPa to Pa
humidity=current['main']['humidity'],
wind_speed=current['wind']['speed'],
wind_direction=current['wind']['deg']
)
# Interpolate to standard pressure levels
return self._interpolate_profile(profile, forecast)
NOAA provides high-resolution data for US locations through the National Weather Service API:
Each data source is evaluated for quality using multiple metrics:
The Global Forecast System (GFS) provides comprehensive atmospheric data in GRIB2 format through NOAA's NOMADS servers.
GFS data is provided at 26 standard pressure levels:
1000, 975, 950, 925, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10 hPa
Variable | Description | Units | Usage |
---|---|---|---|
TMP | Temperature | K | Thermodynamic calculations |
HGT | Geopotential height | m | Altitude reference |
UGRD | U-component wind | m/s | Eastward wind |
VGRD | V-component wind | m/s | Northward wind |
RH | Relative humidity | % | Moisture content |
ABSV | Absolute vorticity | s⁻¹ | Rotation measure |
DZDT | Vertical velocity | Pa/s | Vertical motion |
Converting pressure levels to geometric altitude uses the barometric formula:
class GFSNOMADSFetcher:
def __init__(self):
self.base_url = "https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25.pl"
self.pressure_levels = [1000, 975, 950, 925, 900, 850, 800, 750, 700,
650, 600, 550, 500, 450, 400, 350, 300, 250,
200, 150, 100, 70, 50, 30, 20, 10]
def fetch_atmospheric_data(self, lat, lon, forecast_hour=0):
"""Fetch GFS data for specific location"""
# Download GRIB2 file for the region
grib_file = self._download_grib_subset(lat, lon, forecast_hour)
# Parse GRIB2 data
atmospheric_data = {}
with pygrib.open(grib_file) as grbs:
for grb in grbs:
if grb.level in self.pressure_levels:
level_hPa = grb.level
if grb.name == 'Temperature':
atmospheric_data.setdefault(level_hPa, {})['temperature'] = grb.values
elif grb.name == 'U component of wind':
atmospheric_data.setdefault(level_hPa, {})['u_wind'] = grb.values
elif grb.name == 'V component of wind':
atmospheric_data.setdefault(level_hPa, {})['v_wind'] = grb.values
# ... process other variables
# Convert to altitude-based profile
return self._convert_to_altitude_profile(atmospheric_data, lat, lon)
From the basic GFS variables, we calculate additional parameters:
When multiple data sources are available, sophisticated fusion algorithms combine them optimally:
For overlapping data sources, we use quality-weighted averaging:
where weights are determined by:
Atmospheric data often comes at discrete levels. We use cubic spline interpolation in log-pressure coordinates:
When data is missing at certain levels, physics-based interpolation is used:
def fill_atmospheric_gaps(profile):
"""Fill gaps using physical constraints"""
# Temperature: use moist adiabatic lapse rate if unstable
if is_unstable(profile):
lapse_rate = calculate_moist_adiabatic_lapse_rate(
profile.temperature,
profile.pressure,
profile.humidity
)
else:
lapse_rate = -6.5 # K/km standard
# Fill temperature gaps
profile.temperature = interpolate_with_lapse_rate(
profile.altitude,
profile.temperature,
lapse_rate
)
# Pressure: use hydrostatic equation
for i in range(len(profile.altitude) - 1):
if np.isnan(profile.pressure[i+1]):
dz = profile.altitude[i+1] - profile.altitude[i]
T_avg = (profile.temperature[i] + profile.temperature[i+1]) / 2
profile.pressure[i+1] = profile.pressure[i] * np.exp(
-g * M_air * dz / (R * T_avg)
)
All atmospheric data undergoes rigorous quality control:
Verify that pressure and temperature satisfy the hydrostatic equation:
Check that temperature gradients are physically reasonable:
Ensure wind shear doesn't exceed physical limits:
Statistical measures identify outliers and anomalies:
def calculate_quality_metrics(profile):
"""Calculate comprehensive quality metrics"""
metrics = {}
# Vertical resolution quality
dz = np.diff(profile.altitude)
metrics['vertical_resolution'] = 1.0 / (1.0 + np.std(dz) / np.mean(dz))
# Temperature smoothness
d2T_dz2 = np.diff(np.diff(profile.temperature))
metrics['temperature_smoothness'] = 1.0 / (1.0 + np.std(d2T_dz2))
# Data completeness
metrics['completeness'] = np.sum(~np.isnan(profile.temperature)) / len(profile.temperature)
# Physical consistency
violations = 0
violations += check_hydrostatic_balance(profile)
violations += check_temperature_limits(profile)
violations += check_wind_shear(profile)
metrics['physical_consistency'] = 1.0 / (1.0 + violations)
# Overall quality score
metrics['overall'] = np.mean([
metrics['vertical_resolution'],
metrics['temperature_smoothness'],
metrics['completeness'],
metrics['physical_consistency']
])
return metrics
To minimize API calls and improve performance, atmospheric data is cached intelligently:
class AtmosphericCache:
def __init__(self, cache_dir='data/atmospheric_cache'):
self.cache_dir = cache_dir
self.cache_duration = {
'current': 600, # 10 minutes
'forecast': 3600, # 1 hour
'gfs': 21600, # 6 hours
}
def get_cached_data(self, source, lat, lon, time):
"""Retrieve cached data if valid"""
cache_key = self._generate_key(source, lat, lon, time)
cache_file = os.path.join(self.cache_dir, f"{cache_key}.pkl")
if os.path.exists(cache_file):
age = time.time() - os.path.getmtime(cache_file)
if age < self.cache_duration.get(source, 3600):
with open(cache_file, 'rb') as f:
return pickle.load(f)
return None
Robust error handling ensures the simulation continues even when data sources fail:
def get_atmospheric_profile_with_fallback(lat, lon, alt, time):
"""Get atmospheric profile with automatic fallback"""
errors = []
# Try each source in priority order
for source in ['openweather', 'noaa', 'gfs', 'standard']:
try:
if source == 'standard':
# Final fallback - always works
return standard_atmosphere.get_profile(lat, lon, alt)
profile = fetch_from_source(source, lat, lon, time)
# Validate quality
if profile.quality_score > 0.5:
return profile
else:
errors.append(f"{source}: Low quality score {profile.quality_score}")
except Exception as e:
errors.append(f"{source}: {str(e)}")
continue
# Log all errors for debugging
logger.warning(f"All atmospheric sources failed: {errors}")
# Return standard atmosphere as last resort
return standard_atmosphere.get_profile(lat, lon, alt)
Several techniques optimize atmospheric data processing:
async def fetch_all_sources_parallel(lat, lon, time):
tasks = [
fetch_openweather_async(lat, lon, time),
fetch_noaa_async(lat, lon, time),
fetch_gfs_async(lat, lon, time)
]
results = await asyncio.gather(*tasks, return_exceptions=True)
return process_results(results)
Pre-compute interpolation weights for common trajectories
Only compute levels within expected balloon altitude range