Implementation Guide

Table of Contents

System Overview

The High-Altitude Balloon Flight Simulator is a comprehensive physics-based simulation system designed for accurate trajectory prediction and real-time tracking. The implementation integrates multiple physical models into a cohesive framework that balances accuracy, performance, and usability.

Key Design Principles

  • Modularity: Each physics model is independently testable and replaceable
  • Accuracy: Physical fidelity takes precedence over computational speed
  • Scalability: Support for ensemble runs and sensitivity analysis
  • Real-time capability: Fast enough for live tracking applications
  • Extensibility: Easy addition of new balloon types and physics models

System Components Overview

┌─────────────────┐     ┌────────────────┐     ┌─────────────────┐
│  Configuration  │────▶│  Initializer   │────▶│   Simulator     │
└─────────────────┘     └────────────────┘     └─────────────────┘
                               │                         │
                               ▼                         ▼
                        ┌────────────────┐     ┌─────────────────┐
                        │ Physics Models │     │   Integrator    │
                        └────────────────┘     └─────────────────┘
                               │                         │
                               ▼                         ▼
                        ┌────────────────┐     ┌─────────────────┐
                        │  Data Sources  │     │     Output      │
                        └────────────────┘     └─────────────────┘
                

Architecture

Layered Architecture

Layer Structure:

  1. API Layer: RESTful endpoints, WebSocket connections
  2. Service Layer: Business logic, orchestration
  3. Domain Layer: Physics models, core algorithms
  4. Data Layer: External APIs, file systems, databases
  5. Infrastructure: Logging, monitoring, configuration

Core Classes

# Current Project Structure
balloon-sim/
├── src/                          # All source code
│   ├── api/v1/                  # REST API endpoints
│   │   ├── middleware/          # Auth & error handling
│   │   ├── routes/              # API route handlers
│   │   └── schemas/             # Request validation
│   ├── core/                    # Core business logic
│   │   ├── config/              # Configuration management
│   │   ├── models/              # Database models
│   │   └── services/            # Business services
│   ├── simulation/              # Physics engine
│   │   ├── atmosphere/          # Atmospheric models
│   │   ├── balloons/            # Balloon physics
│   │   ├── engine/              # Simulation controller
│   │   ├── physics/             # Physics calculations
│   │   └── utils/               # Common utilities
│   ├── web/                     # Web application
│   │   ├── static/              # Frontend assets
│   │   ├── templates/           # HTML templates
│   │   └── app.py               # Flask application
│   └── workers/                 # Background processors
├── data/                        # Data files
│   ├── balloon_configs/         # Balloon specifications
│   └── atmospheric_data/        # Weather data
├── scripts/                     # Utility scripts
└── run_server.py                # Main entry point

Component Relationships

class BalloonSimulator:
    """Main orchestrator for balloon flight simulation"""

    def __init__(self, config: SimulationConfig):
        # Initialize components with dependency injection
        self.atmosphere = AtmosphereModel(config.atmosphere)
        self.coordinate_system = CoordinateSystem(config.geodetic)

        # Create balloon based on type
        self.balloon = BalloonFactory.create(
            config.balloon_type,
            config.balloon_params
        )

        # Physics models
        self.thermodynamics = ThermalModel(config.thermal)
        self.aerodynamics = AerodynamicsModel(config.aero)

        # Numerical integrator
        self.integrator = DormandPrince87(
            tolerance=config.numerical.tolerance,
            max_step=config.numerical.max_timestep
        )

        # Data sources
        self.weather_data = WeatherDataManager(config.weather)
        self.terrain_data = TerrainDataManager(config.terrain)

    def simulate(self, initial_state: State, duration: float) -> Trajectory:
        """Run simulation from initial state"""
        # Simulation implementation
        pass

Core Components

State Management

@dataclass
class State:
    """Complete state vector for simulation"""
    # Position and motion
    time: float
    position: np.ndarray  # ECEF coordinates [x, y, z]
    velocity: np.ndarray  # ECEF velocity [vx, vy, vz]

    # Thermodynamic state
    temperature_gas: float
    temperature_film: float
    pressure_gas: float

    # Mass properties
    mass_gas: float
    mass_payload: float
    mass_balloon: float

    # Balloon geometry
    volume: float
    radius: float

    # Derived properties (computed, not integrated)
    altitude: float = field(init=False)
    latitude: float = field(init=False)
    longitude: float = field(init=False)

    def __post_init__(self):
        """Compute derived properties"""
        self.update_geodetic_position()

    def to_integration_vector(self) -> np.ndarray:
        """Convert to vector for numerical integration"""
        return np.concatenate([
            self.position,
            self.velocity,
            [self.temperature_gas],
            [self.temperature_film],
            [self.mass_gas]
        ])

    @classmethod
    def from_integration_vector(cls, vec: np.ndarray, time: float,
                               static_params: dict) -> 'State':
        """Reconstruct state from integration vector"""
        return cls(
            time=time,
            position=vec[0:3],
            velocity=vec[3:6],
            temperature_gas=vec[6],
            temperature_film=vec[7],
            mass_gas=vec[8],
            **static_params
        )

Physics Model Interface

class PhysicsModel(ABC):
    """Abstract base class for physics models"""

    @abstractmethod
    def compute_derivatives(self, state: State,
                          environment: Environment) -> Derivatives:
        """Compute time derivatives of state variables"""
        pass

    @abstractmethod
    def validate_state(self, state: State) -> bool:
        """Check if state is physically valid"""
        pass

    @abstractmethod
    def get_diagnostic_data(self, state: State) -> dict:
        """Return diagnostic information for analysis"""
        pass

class BalloonPhysics(PhysicsModel):
    """Complete balloon physics implementation"""

    def __init__(self, balloon_params: BalloonParameters):
        self.params = balloon_params
        self.gas_model = GasThermodynamics()
        self.material_model = BalloonMaterial(balloon_params.material)

    def compute_derivatives(self, state: State,
                          environment: Environment) -> Derivatives:
        # Get environmental conditions
        atm = environment.atmosphere.get_conditions(state.altitude)

        # Compute forces
        forces = self.compute_forces(state, atm)

        # Thermal dynamics
        heat_rates = self.compute_heat_transfer(state, environment)

        # Mass dynamics (venting/leakage)
        mass_rate = self.compute_mass_flow(state, atm)

        # Build derivatives
        return Derivatives(
            position=state.velocity,
            velocity=forces.total / self.total_mass(state),
            temperature_gas=heat_rates.gas / self.gas_heat_capacity(state),
            temperature_film=heat_rates.film / self.film_heat_capacity(state),
            mass_gas=mass_rate
        )

Component Configuration

Component Responsibility Key Interfaces Configuration
AtmosphereModel Atmospheric conditions get_conditions(altitude)
get_wind(position, time)
Data source hierarchy
Update frequency
BalloonPhysics Balloon dynamics compute_forces()
check_burst()
compute_volume()
Balloon type
Material properties
ThermalModel Heat transfer compute_heat_rates()
solar_radiation()
thermal_radiation()
Emissivity values
Heat transfer coeffs
Integrator Numerical integration step()
integrate()
set_tolerances()
Error tolerances
Max timestep
DataManager External data access fetch_weather()
get_terrain()
cache_management()
API credentials
Cache policy

Data Flow

Simulation Data Pipeline

┌──────────────┐     ┌──────────────┐     ┌──────────────┐
│Initial State │────▶│  Integrator  │────▶│ Time Step n  │
└──────────────┘     └──────────────┘     └──────────────┘
                            │                      │
                            ▼                      ▼
                     ┌──────────────┐     ┌──────────────┐
                     │Physics Models│     │ Environment  │
                     └──────────────┘     │   Update     │
                            │             └──────────────┘
                            ▼                      │
                     ┌──────────────┐             │
                     │ Derivatives  │◀────────────┘
                     └──────────────┘
                            │
                            ▼
                     ┌──────────────┐
                     │State Update  │
                     └──────────────┘
                            │
                            ▼
                     ┌──────────────┐
                     │   Output &    │
                     │  Diagnostics  │
                     └──────────────┘
                

Real-time Data Integration

class RealtimeDataManager:
    """Manages real-time data updates during simulation"""

    def __init__(self, config: DataConfig):
        self.weather_fetcher = WeatherDataFetcher(config.weather)
        self.cache = DataCache(config.cache)
        self.update_interval = config.update_interval
        self.last_update = {}

    async def get_current_conditions(self, position: Position,
                                   time: datetime) -> Environment:
        """Get current environmental conditions with caching"""

        # Check if update needed
        cache_key = self._get_cache_key(position, time)
        if self._is_cache_valid(cache_key, time):
            return self.cache.get(cache_key)

        # Fetch new data
        weather_data = await self.weather_fetcher.fetch_async(
            position, time
        )

        # Process and cache
        environment = self._process_weather_data(weather_data)
        self.cache.set(cache_key, environment, ttl=self.update_interval)

        return environment

    def _process_weather_data(self, raw_data: dict) -> Environment:
        """Process raw weather data into environment model"""

        # Extract wind components
        wind_profile = WindProfile(
            altitudes=raw_data['levels']['altitude'],
            u_wind=raw_data['levels']['u_wind'],
            v_wind=raw_data['levels']['v_wind'],
            interpolation='cubic'
        )

        # Temperature profile
        temp_profile = TemperatureProfile(
            altitudes=raw_data['levels']['altitude'],
            temperatures=raw_data['levels']['temperature']
        )

        # Create environment
        return Environment(
            wind=wind_profile,
            temperature=temp_profile,
            pressure_surface=raw_data['surface']['pressure'],
            timestamp=raw_data['timestamp']
        )

Output Data Management

class TrajectoryOutput:
    """Manages simulation output and data export"""

    def __init__(self, config: OutputConfig):
        self.format = config.format
        self.compression = config.compression
        self.include_diagnostics = config.include_diagnostics
        self.output_interval = config.output_interval

        self.trajectory_points = []
        self.diagnostic_data = []

    def add_point(self, state: State, diagnostics: dict = None):
        """Add trajectory point with optional diagnostics"""

        point = TrajectoryPoint(
            time=state.time,
            position=state.position.copy(),
            velocity=state.velocity.copy(),
            altitude=state.altitude,
            latitude=state.latitude,
            longitude=state.longitude,
            temperature_gas=state.temperature_gas,
            temperature_film=state.temperature_film,
            volume=state.volume,
            ascent_rate=state.velocity[2]
        )

        self.trajectory_points.append(point)

        if self.include_diagnostics and diagnostics:
            self.diagnostic_data.append({
                'time': state.time,
                **diagnostics
            })

    def export(self, filename: str):
        """Export trajectory in specified format"""

        if self.format == 'csv':
            self._export_csv(filename)
        elif self.format == 'json':
            self._export_json(filename)
        elif self.format == 'kml':
            self._export_kml(filename)
        elif self.format == 'netcdf':
            self._export_netcdf(filename)
        else:
            raise ValueError(f"Unknown format: {self.format}")

    def _export_kml(self, filename: str):
        """Export trajectory as KML for Google Earth"""

        kml = simplekml.Kml()

        # Flight path
        path = kml.newlinestring(name="Balloon Trajectory")
        path.coords = [(p.longitude, p.latitude, p.altitude)
                      for p in self.trajectory_points]
        path.altitudemode = simplekml.AltitudeMode.absolute
        path.style.linestyle.width = 3
        path.style.linestyle.color = simplekml.Color.red

        # Key points
        launch = self.trajectory_points[0]
        burst = max(self.trajectory_points, key=lambda p: p.altitude)
        landing = self.trajectory_points[-1]

        for point, name, icon in [
            (launch, "Launch", "http://maps.google.com/mapfiles/kml/paddle/grn-circle.png"),
            (burst, "Burst", "http://maps.google.com/mapfiles/kml/paddle/red-circle.png"),
            (landing, "Landing", "http://maps.google.com/mapfiles/kml/paddle/blu-circle.png")
        ]:
            pm = kml.newpoint(name=name)
            pm.coords = [(point.longitude, point.latitude, point.altitude)]
            pm.style.iconstyle.icon.href = icon

        kml.save(filename)

Initialization & Configuration

Configuration Management

@dataclass
class SimulationConfig:
    """Complete simulation configuration"""

    # Balloon configuration
    balloon_type: str = 'HAB-1200'
    balloon_params: dict = field(default_factory=dict)
    payload_mass: float = 2.0  # kg

    # Launch configuration
    launch_site: LaunchSite = field(default_factory=LaunchSite)
    launch_time: datetime = field(default_factory=datetime.utcnow)

    # Numerical configuration
    numerical: NumericalConfig = field(default_factory=NumericalConfig)

    # Data sources
    weather_source: str = 'gfs'
    terrain_enabled: bool = True

    # Output configuration
    output: OutputConfig = field(default_factory=OutputConfig)

    @classmethod
    def from_file(cls, filename: str) -> 'SimulationConfig':
        """Load configuration from YAML/JSON file"""
        with open(filename, 'r') as f:
            if filename.endswith('.yaml') or filename.endswith('.yml'):
                data = yaml.safe_load(f)
            else:
                data = json.load(f)

        return cls(**data)

    def validate(self):
        """Validate configuration consistency"""

        # Check balloon type
        if self.balloon_type not in AVAILABLE_BALLOONS:
            raise ValueError(f"Unknown balloon type: {self.balloon_type}")

        # Validate numerical parameters
        if self.numerical.max_timestep < self.numerical.min_timestep:
            raise ValueError("Max timestep must be >= min timestep")

        # Check data source availability
        if self.weather_source not in WEATHER_SOURCES:
            raise ValueError(f"Unknown weather source: {self.weather_source}")

class SimulationInitializer:
    """Initialize simulation with proper state setup"""

    def __init__(self, config: SimulationConfig):
        self.config = config

    def create_initial_state(self) -> State:
        """Create initial state from configuration"""

        # Get launch site coordinates
        launch_pos = self.config.launch_site.to_ecef()

        # Initialize balloon
        balloon = BalloonFactory.create(
            self.config.balloon_type,
            self.config.balloon_params
        )

        # Get initial atmospheric conditions
        atmosphere = AtmosphereModel()
        conditions = atmosphere.get_conditions(
            self.config.launch_site.altitude
        )

        # Calculate initial gas mass for neutral buoyancy + free lift
        total_mass = (
            balloon.mass_envelope +
            self.config.payload_mass +
            balloon.mass_fittings
        )

        target_lift = self.config.balloon_params.get('target_lift',
                                                    total_mass * 0.3)

        gas_mass = balloon.calculate_gas_mass_for_lift(
            target_lift + total_mass,
            conditions['pressure'],
            conditions['temperature']
        )

        # Create initial state
        return State(
            time=0.0,
            position=launch_pos,
            velocity=np.zeros(3),
            temperature_gas=conditions['temperature'],
            temperature_film=conditions['temperature'],
            pressure_gas=conditions['pressure'],
            mass_gas=gas_mass,
            mass_payload=self.config.payload_mass,
            mass_balloon=balloon.mass_envelope,
            volume=balloon.calculate_volume(gas_mass,
                                          conditions['pressure'],
                                          conditions['temperature']),
            radius=balloon.calculate_radius(volume)
        )

Dependency Injection Setup

class SimulatorFactory:
    """Factory for creating configured simulator instances"""

    @staticmethod
    def create_simulator(config: SimulationConfig) -> BalloonSimulator:
        """Create fully configured simulator"""

        # Create data managers
        weather_manager = WeatherDataManager(
            source=config.weather_source,
            cache_dir=config.cache_dir,
            api_key=config.weather_api_key
        )

        terrain_manager = None
        if config.terrain_enabled:
            terrain_manager = TerrainDataManager(
                cache_dir=config.cache_dir
            )

        # Create physics models
        atmosphere = AtmosphereModel(
            weather_data=weather_manager,
            model_type=config.atmosphere_model
        )

        balloon = BalloonFactory.create(
            config.balloon_type,
            config.balloon_params
        )

        thermal = ThermalModel(
            config.thermal_params
        )

        aero = AerodynamicsModel(
            config.aero_params
        )

        # Create integrator
        integrator = IntegratorFactory.create(
            method=config.numerical.integration_method,
            tolerance=config.numerical.tolerance,
            max_step=config.numerical.max_timestep
        )

        # Assemble simulator
        return BalloonSimulator(
            atmosphere=atmosphere,
            balloon=balloon,
            thermal=thermal,
            aerodynamics=aero,
            integrator=integrator,
            terrain=terrain_manager,
            config=config
        )

Main Simulation Loop

Core Simulation Algorithm

class BalloonSimulator:
    """Main simulation orchestrator"""

    def simulate(self, initial_state: State,
                duration: float = None,
                termination_conditions: list = None) -> SimulationResult:
        """Run complete simulation"""

        # Initialize
        state = initial_state.copy()
        trajectory = Trajectory()
        trajectory.add_point(state)

        # Set up termination conditions
        if termination_conditions is None:
            termination_conditions = [
                AltitudeTermination(min_altitude=state.altitude - 100),
                BurstTermination(self.balloon),
                TimeoutTermination(duration or 4*3600)  # 4 hours default
            ]

        # Main integration loop
        try:
            while not any(tc.should_terminate(state) for tc in termination_conditions):
                # Get environment at current state
                environment = self.get_environment(state)

                # Compute time step
                dt = self.compute_timestep(state, environment)

                # Integration step
                new_state = self.integrate_step(state, environment, dt)

                # Check for special events
                events = self.check_events(state, new_state)
                if events:
                    new_state = self.handle_events(events, new_state)

                # Update state
                state = new_state

                # Record trajectory
                if self.should_record(state):
                    trajectory.add_point(state)

                # Progress callback
                if self.progress_callback:
                    self.progress_callback(state, trajectory)

        except SimulationError as e:
            # Handle simulation errors gracefully
            trajectory.set_error(str(e))

        # Finalize results
        return SimulationResult(
            trajectory=trajectory,
            termination_reason=self.get_termination_reason(state, termination_conditions),
            final_state=state,
            statistics=self.compute_statistics(trajectory),
            metadata=self.get_metadata()
        )

    def integrate_step(self, state: State, environment: Environment,
                      dt: float) -> State:
        """Perform one integration step"""

        # Define dynamics function for integrator
        def dynamics(t, y):
            # Reconstruct state from vector
            current_state = State.from_integration_vector(
                y, state.time + t, self.get_static_params(state)
            )

            # Compute all physics
            derivatives = self.compute_derivatives(current_state, environment)

            return derivatives.to_vector()

        # Integrate
        t_span = (0, dt)
        y0 = state.to_integration_vector()

        result = self.integrator.step(dynamics, t_span, y0)

        # Create new state
        new_state = State.from_integration_vector(
            result.y,
            state.time + dt,
            self.get_static_params(state)
        )

        # Update derived quantities
        new_state.update_derived_properties(self.balloon, environment)

        return new_state

    def compute_derivatives(self, state: State,
                          environment: Environment) -> Derivatives:
        """Compute all state derivatives"""

        # Get atmospheric conditions
        atmosphere = environment.get_conditions_at(state.position)

        # Compute forces
        gravity = self.compute_gravity(state)
        buoyancy = self.compute_buoyancy(state, atmosphere)
        drag = self.aerodynamics.compute_drag(state, atmosphere)

        total_force = gravity + buoyancy + drag

        # Get total mass
        total_mass = (state.mass_gas + state.mass_balloon +
                     state.mass_payload)

        # Acceleration
        acceleration = total_force / total_mass

        # Thermal dynamics
        heat_rates = self.thermal.compute_heat_transfer(
            state, environment
        )

        # Gas dynamics
        mass_flow = self.balloon.compute_mass_flow(state, atmosphere)

        # Build derivatives
        return Derivatives(
            position=state.velocity,
            velocity=acceleration,
            temperature_gas=heat_rates.gas_rate,
            temperature_film=heat_rates.film_rate,
            mass_gas=mass_flow
        )

Event Detection and Handling

class EventDetector:
    """Detect special events during simulation"""

    def __init__(self):
        self.event_handlers = {
            'burst': BurstHandler(),
            'float': FloatAltitudeHandler(),
            'termination': TerminationHandler()
        }

    def check_events(self, state_old: State, state_new: State) -> list:
        """Check for events between states"""

        events = []

        # Burst detection
        if self.detect_burst(state_old, state_new):
            events.append(Event('burst', self.find_burst_point(state_old, state_new)))

        # Float altitude reached
        if self.detect_float(state_old, state_new):
            events.append(Event('float', state_new))

        # Ground impact
        if state_new.altitude <= 0:
            events.append(Event('landing', self.interpolate_landing(state_old, state_new)))

        return events

    def detect_burst(self, state_old: State, state_new: State) -> bool:
        """Detect balloon burst"""

        # Check multiple criteria
        diameter_old = 2 * state_old.radius
        diameter_new = 2 * state_new.radius

        # Diameter exceeded burst diameter
        if (diameter_old < self.burst_diameter and
            diameter_new >= self.burst_diameter):
            return True

        # Sudden volume decrease (catastrophic failure)
        if state_new.volume < 0.5 * state_old.volume:
            return True

        # Strain limit exceeded
        strain = self.calculate_strain(state_new)
        if strain > self.material.max_strain:
            return True

        return False

    def interpolate_burst_point(self, state_old: State,
                               state_new: State) -> State:
        """Find exact burst point via interpolation"""

        # Binary search for burst point
        low, high = 0.0, 1.0

        for _ in range(10):  # 10 iterations gives ~0.1% accuracy
            mid = (low + high) / 2
            state_mid = self.interpolate_states(state_old, state_new, mid)

            if self.is_burst(state_mid):
                high = mid
            else:
                low = mid

        return self.interpolate_states(state_old, state_new, high)

API Design

RESTful API Endpoints

from flask import Flask, request, jsonify
from flask_restful import Api, Resource

app = Flask(__name__)
api = Api(app)

class SimulationResource(Resource):
    """Main simulation endpoint"""

    def post(self):
        """Create new simulation"""

        # Parse request
        data = request.get_json()

        # Validate input
        try:
            config = SimulationConfig(**data)
            config.validate()
        except ValueError as e:
            return {'error': str(e)}, 400

        # Create simulation
        sim_id = str(uuid.uuid4())

        # Run async
        task = run_simulation_async.delay(sim_id, config)

        return {
            'simulation_id': sim_id,
            'task_id': task.id,
            'status': 'queued',
            'links': {
                'self': f'/api/simulations/{sim_id}',
                'status': f'/api/simulations/{sim_id}/status',
                'results': f'/api/simulations/{sim_id}/results',
                'websocket': f'/ws/simulations/{sim_id}'
            }
        }, 202

class SimulationStatus(Resource):
    """Check simulation status"""

    def get(self, sim_id):
        """Get current status"""

        status = get_simulation_status(sim_id)

        if not status:
            return {'error': 'Simulation not found'}, 404

        return {
            'simulation_id': sim_id,
            'status': status.state,
            'progress': status.progress,
            'current_altitude': status.current_altitude,
            'elapsed_time': status.elapsed_time,
            'estimated_remaining': status.estimated_remaining
        }

# API Routes
api.add_resource(SimulationResource, '/api/simulations')
api.add_resource(SimulationStatus, '/api/simulations//status')

# WebSocket for real-time updates
from flask_socketio import SocketIO, emit, join_room

socketio = SocketIO(app, cors_allowed_origins="*")

@socketio.on('subscribe')
def handle_subscription(data):
    """Subscribe to simulation updates"""
    sim_id = data['simulation_id']
    join_room(sim_id)
    emit('subscribed', {'simulation_id': sim_id})

def broadcast_update(sim_id, update):
    """Broadcast update to subscribed clients"""
    socketio.emit('update', update, room=sim_id)

Client SDK

class BalloonSimulatorClient:
    """Python client for balloon simulator API"""

    def __init__(self, base_url='http://localhost:5000'):
        self.base_url = base_url
        self.session = requests.Session()

    def run_simulation(self, config: dict, wait=True,
                      callback=None) -> SimulationResult:
        """Run simulation with optional real-time updates"""

        # Submit simulation
        response = self.session.post(
            f'{self.base_url}/api/simulations',
            json=config
        )
        response.raise_for_status()

        sim_data = response.json()
        sim_id = sim_data['simulation_id']

        if callback:
            # Connect WebSocket for updates
            self._connect_websocket(sim_id, callback)

        if wait:
            # Poll until complete
            return self._wait_for_completion(sim_id)
        else:
            # Return immediately
            return SimulationHandle(sim_id, self)

    def _connect_websocket(self, sim_id, callback):
        """Connect to WebSocket for real-time updates"""

        import socketio

        sio = socketio.Client()

        @sio.on('update')
        def on_update(data):
            callback(data)

        sio.connect(self.base_url)
        sio.emit('subscribe', {'simulation_id': sim_id})

        return sio

Performance Considerations

Optimization Strategies

1. Vectorization

# Inefficient
for i in range(len(positions)):
    distances[i] = np.sqrt(np.sum((positions[i] - reference)**2))

# Efficient
distances = np.linalg.norm(positions - reference, axis=1)

2. Caching

@lru_cache(maxsize=1000)
def get_atmosphere_conditions(altitude_rounded: float):
    """Cache atmosphere lookups at 100m intervals"""
    return compute_atmosphere(altitude_rounded)

def get_conditions(altitude: float):
    # Round to nearest 100m for cache efficiency
    altitude_rounded = round(altitude / 100) * 100
    return get_atmosphere_conditions(altitude_rounded)

3. Parallel Processing

def run_ensemble(configs: list, n_workers=4):
    """Run multiple simulations in parallel"""

    with ProcessPoolExecutor(max_workers=n_workers) as executor:
        futures = []

        for config in configs:
            future = executor.submit(run_single_simulation, config)
            futures.append(future)

        results = []
        for future in as_completed(futures):
            results.append(future.result())

    return results

Performance Metrics

Operation Target Time Optimization
Single timestep (1s) < 1 ms Vectorized operations
Atmosphere lookup < 0.1 ms LRU cache
3-hour trajectory < 5 s Adaptive timestep
Weather data fetch < 2 s Async + caching
100-member ensemble < 30 s Multiprocessing

Memory Management

class MemoryEfficientTrajectory:
    """Memory-efficient trajectory storage"""

    def __init__(self, decimation_factor=10):
        self.decimation_factor = decimation_factor
        self.key_points = []  # Launch, burst, landing
        self.decimated_points = []  # Every Nth point
        self.full_trajectory = None  # Only if requested
        self.point_count = 0

    def add_point(self, state: State):
        """Add point with intelligent decimation"""

        # Always keep key points
        if self._is_key_point(state):
            self.key_points.append(state.to_compact())

        # Decimate regular points
        if self.point_count % self.decimation_factor == 0:
            self.decimated_points.append(state.to_compact())

        self.point_count += 1

    def get_full_trajectory(self):
        """Reconstruct full trajectory if needed"""
        if self.full_trajectory is None:
            raise ValueError("Full trajectory not stored")
        return self.full_trajectory

Testing Strategy

Unit Testing

import pytest
import numpy as np
from numpy.testing import assert_allclose

class TestBalloonPhysics:
    """Unit tests for balloon physics"""

    @pytest.fixture
    def balloon(self):
        """Standard test balloon"""
        return LatexBalloon(
            manufacturer='standard',
            model='HAB-1200',
            burst_diameter=8.0
        )

    def test_buoyancy_calculation(self, balloon):
        """Test buoyancy force calculation"""

        state = State(
            volume=4.5,  # m³
            temperature_gas=250,  # K
            pressure_gas=50000,  # Pa
        )

        atmosphere = AtmosphereConditions(
            pressure=50000,
            temperature=250,
            density=0.7
        )

        buoyancy = balloon.calculate_buoyancy(state, atmosphere)

        # F_b = ρ_air * V * g
        expected = 0.7 * 4.5 * 9.81

        assert_allclose(buoyancy, expected, rtol=1e-6)

    def test_volume_pressure_relationship(self, balloon):
        """Test ideal gas law implementation"""

        # Known conditions
        mass_gas = 0.5  # kg
        pressure = 101325  # Pa
        temperature = 288  # K

        volume = balloon.calculate_volume(mass_gas, pressure, temperature)

        # Verify with ideal gas law
        R_specific = 2077  # J/(kg·K) for helium
        expected_volume = mass_gas * R_specific * temperature / pressure

        assert_allclose(volume, expected_volume, rtol=1e-3)

    @pytest.mark.parametrize("altitude,expected_g", [
        (0, 9.81),
        (10000, 9.78),
        (30000, 9.71),
    ])
    def test_gravity_model(self, altitude, expected_g):
        """Test gravity variation with altitude"""

        g = calculate_gravity(altitude, latitude=45.0)
        assert_allclose(g, expected_g, atol=0.01)

Integration Testing

class TestSimulationIntegration:
    """Integration tests for complete simulation"""

    def test_standard_flight_profile(self):
        """Test typical flight matches expected profile"""

        config = SimulationConfig(
            balloon_type='HAB-1200',
            payload_mass=2.0,
            launch_site=LaunchSite(lat=40.0, lon=-105.0, alt=1600),
        )

        simulator = SimulatorFactory.create_simulator(config)
        initial_state = create_initial_state(config)

        result = simulator.simulate(initial_state)

        # Verify key metrics
        assert result.max_altitude > 25000  # meters
        assert result.max_altitude < 35000
        assert result.flight_time > 7000   # seconds
        assert result.flight_time < 12000
        assert result.range_distance < 200000  # meters

    def test_burst_detection(self):
        """Test burst is detected correctly"""

        # Configure for guaranteed burst
        config = SimulationConfig(
            balloon_type='HAB-1200',
            payload_mass=0.5,  # Light payload = higher burst
        )

        simulator = SimulatorFactory.create_simulator(config)
        result = simulator.simulate(create_initial_state(config))

        assert result.termination_reason == 'burst'
        assert result.burst_altitude > 30000

Performance Testing

import time
from contextlib import contextmanager

@contextmanager
def timer(name):
    """Simple performance timer"""
    start = time.perf_counter()
    yield
    elapsed = time.perf_counter() - start
    print(f"{name}: {elapsed:.3f}s")

def test_simulation_performance():
    """Benchmark simulation performance"""

    config = standard_config()
    simulator = create_simulator(config)

    # Warm up
    simulator.simulate(create_initial_state(config))

    # Benchmark
    n_runs = 10
    times = []

    for _ in range(n_runs):
        with timer("Single simulation") as t:
            result = simulator.simulate(create_initial_state(config))
        times.append(t)

    avg_time = np.mean(times)
    std_time = np.std(times)

    print(f"Average: {avg_time:.3f}s ± {std_time:.3f}s")
    assert avg_time < 5.0  # Should complete in < 5 seconds

Deployment

Docker Configuration

# Dockerfile
FROM python:3.9-slim

# Install system dependencies
RUN apt-get update && apt-get install -y \
    gcc \
    gfortran \
    libgeos-dev \
    libproj-dev \
    && rm -rf /var/lib/apt/lists/*

# Set working directory
WORKDIR /app

# Install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application
COPY . .

# Create non-root user
RUN useradd -m -u 1000 simulator && \
    chown -R simulator:simulator /app

USER simulator

# Configure environment
ENV PYTHONUNBUFFERED=1
ENV SIMULATOR_CONFIG=/app/config/production.yaml

# Expose ports
EXPOSE 5000 8000

# Run application
CMD ["gunicorn", "--bind", "0.0.0.0:5000", \
     "--workers", "4", "--threads", "2", \
     "--timeout", "300", "app:application"]

Production Configuration

# docker-compose.yml
version: '3.8'

services:
  simulator:
    build: .
    ports:
      - "5000:5000"
    environment:
      - REDIS_URL=redis://redis:6379
      - DATABASE_URL=postgresql://user:pass@postgres:5432/simulator
      - WEATHER_API_KEY=${WEATHER_API_KEY}
    depends_on:
      - redis
      - postgres
    volumes:
      - ./data:/app/data
      - ./cache:/app/cache
    restart: unless-stopped

  redis:
    image: redis:6-alpine
    volumes:
      - redis_data:/data
    restart: unless-stopped

  postgres:
    image: postgres:13
    environment:
      - POSTGRES_DB=simulator
      - POSTGRES_USER=user
      - POSTGRES_PASSWORD=pass
    volumes:
      - postgres_data:/var/lib/postgresql/data
    restart: unless-stopped

  nginx:
    image: nginx:alpine
    ports:
      - "80:80"
      - "443:443"
    volumes:
      - ./nginx.conf:/etc/nginx/nginx.conf
      - ./ssl:/etc/nginx/ssl
    depends_on:
      - simulator
    restart: unless-stopped

volumes:
  redis_data:
  postgres_data:

Monitoring and Logging

import logging
from prometheus_client import Counter, Histogram, Gauge

# Metrics
simulation_counter = Counter('simulations_total',
                           'Total simulations run')
simulation_duration = Histogram('simulation_duration_seconds',
                              'Simulation execution time')
active_simulations = Gauge('active_simulations',
                         'Currently running simulations')

# Structured logging
logger = logging.getLogger(__name__)

class SimulationMonitor:
    """Monitor simulation performance and health"""

    def __init__(self):
        self.setup_logging()

    def setup_logging(self):
        """Configure structured logging"""

        handler = logging.StreamHandler()
        formatter = logging.Formatter(
            '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        )
        handler.setFormatter(formatter)
        logger.addHandler(handler)
        logger.setLevel(logging.INFO)

    @contextmanager
    def monitor_simulation(self, sim_id):
        """Monitor single simulation execution"""

        simulation_counter.inc()
        active_simulations.inc()

        logger.info(f"Starting simulation {sim_id}")
        start_time = time.time()

        try:
            yield
        except Exception as e:
            logger.error(f"Simulation {sim_id} failed: {e}")
            raise
        finally:
            duration = time.time() - start_time
            simulation_duration.observe(duration)
            active_simulations.dec()

            logger.info(f"Completed simulation {sim_id} in {duration:.2f}s")
Production Checklist:
  • Configure proper API rate limiting
  • Set up SSL/TLS certificates
  • Implement request authentication
  • Configure backup and recovery
  • Set up monitoring and alerting
  • Test disaster recovery procedures
  • Document API versioning strategy