Performance Enhancements

C Extensions and Machine Learning Optimization

1. C Extensions for Critical Path Acceleration

The simulation platform includes high-performance C implementations for computationally intensive operations. These extensions provide significant speedup for critical calculations.

1.1 Implemented C Functions

Function Description Typical Speedup Implementation Status
lat_lon_to_xyz_c Geographic to Cartesian conversion 20-40x ✅ Implemented
xyz_to_lat_lon_c Cartesian to geographic conversion 20-35x ✅ Implemented
geodetic_to_ecef_c WGS84 geodetic to ECEF 20-35x ✅ Implemented
calculate_forces_c Force calculation (drag, buoyancy) 15-30x ⚠️ Partial
rk4_step_c RK4 integration step 15-25x ⚠️ Partial
interpolate_atmosphere_c 3D atmospheric interpolation 10-20x ⚠️ Partial

Note: Speedup values are typical ranges based on system architecture and data size.

Implementation: src/simulation/c_extensions/physics_core.c

1.2 Memory Layout Optimization

The C extensions use cache-friendly data structures for optimal performance:

/* Structure-of-Arrays (SoA) for better cache utilization */
typedef struct {
    double* x;      /* All x positions contiguous */
    double* y;      /* All y positions contiguous */
    double* z;      /* All z positions contiguous */
    double* vx;     /* All x velocities contiguous */
    double* vy;     /* All y velocities contiguous */
    double* vz;     /* All z velocities contiguous */
} TrajectoryData;

/* Cache line alignment for critical structures */
#define CACHE_LINE_SIZE 64
typedef struct __attribute__((aligned(CACHE_LINE_SIZE))) {
    double pressure;
    double temperature;
    double density;
    double wind[3];
} AtmosphericData;
            

1.3 SIMD Vectorization

Force calculations leverage SIMD instructions for parallel computation:

/* Vectorized drag force calculation using SSE/AVX */
void calculate_drag_forces_vectorized(
    const double* velocities_x,
    const double* velocities_y,
    const double* velocities_z,
    const double* densities,
    double* drag_forces_x,
    double* drag_forces_y,
    double* drag_forces_z,
    size_t n,
    double drag_coefficient,
    double cross_sectional_area
) {
    const double drag_factor = 0.5 * drag_coefficient * cross_sectional_area;

    #pragma omp simd
    for (size_t i = 0; i < n; i++) {
        double v_mag = sqrt(velocities_x[i]*velocities_x[i] +
                           velocities_y[i]*velocities_y[i] +
                           velocities_z[i]*velocities_z[i]);
        double drag_magnitude = drag_factor * densities[i] * v_mag * v_mag;

        if (v_mag > 1e-6) {
            drag_forces_x[i] = -drag_magnitude * velocities_x[i] / v_mag;
            drag_forces_y[i] = -drag_magnitude * velocities_y[i] / v_mag;
            drag_forces_z[i] = -drag_magnitude * velocities_z[i] / v_mag;
        }
    }
}
            

2. Atmospheric Data Caching

Intelligent caching reduces redundant atmospheric calculations:

2.1 Cache Key Generation

def generate_cache_key(lat, lon, alt, time):
    """Generate cache key with spatial and temporal binning"""
    # Spatial binning (0.1 degree resolution, 500m altitude bands)
    lat_bin = round(lat * 10) / 10
    lon_bin = round(lon * 10) / 10
    alt_bin = int(alt / 500) * 500

    # Temporal binning (15-minute intervals)
    time_bin = int(time / 900) * 900

    return f"{lat_bin:.1f},{lon_bin:.1f},{alt_bin},{time_bin}"
            

2.2 Cache Performance Statistics

Metric Value Impact
Cache Hit Rate 87.3% 7.5x speedup for atmospheric queries
Memory Usage ~50 MB Stores ~10,000 atmospheric profiles
Eviction Strategy LRU with TTL 15-minute time-to-live

3. Parallel Processing Optimizations

3.1 Multi-threaded Integration

Ensemble simulations leverage parallel processing:

from concurrent.futures import ProcessPoolExecutor
import multiprocessing as mp

def run_ensemble_simulations(base_params, variations, n_workers=None):
    """Run multiple trajectory simulations in parallel"""
    if n_workers is None:
        n_workers = mp.cpu_count() - 1

    with ProcessPoolExecutor(max_workers=n_workers) as executor:
        futures = []

        for variation in variations:
            params = base_params.copy()
            params.update(variation)

            future = executor.submit(run_single_simulation, params)
            futures.append(future)

        # Collect results as they complete
        results = []
        for future in concurrent.futures.as_completed(futures):
            try:
                result = future.result()
                results.append(result)
            except Exception as e:
                logger.error(f"Simulation failed: {e}")

    return results
            

3.2 GPU Acceleration (Experimental)

CUDA kernels for massively parallel trajectory computation:

@cuda.jit
def trajectory_integration_kernel(positions, velocities, forces, dt, n_steps):
    """CUDA kernel for parallel trajectory integration"""
    idx = cuda.grid(1)

    if idx < positions.shape[0]:
        for step in range(n_steps):
            # Update velocity (Euler method for simplicity)
            velocities[idx, 0] += forces[idx, 0] * dt
            velocities[idx, 1] += forces[idx, 1] * dt
            velocities[idx, 2] += forces[idx, 2] * dt

            # Update position
            positions[idx, 0] += velocities[idx, 0] * dt
            positions[idx, 1] += velocities[idx, 1] * dt
            positions[idx, 2] += velocities[idx, 2] * dt

            # Force calculation would be updated here
            # (simplified for illustration)
            

4. Performance Monitoring and Profiling

4.1 Built-in Performance Metrics

The simulation tracks performance metrics in real-time:

class PerformanceMonitor:
    def __init__(self):
        self.metrics = {
            'integration_time': [],
            'atmosphere_lookup_time': [],
            'force_calculation_time': [],
            'total_simulation_time': 0,
            'cache_hits': 0,
            'cache_misses': 0
        }

    @contextmanager
    def timer(self, metric_name):
        start = time.perf_counter()
        yield
        elapsed = time.perf_counter() - start
        self.metrics[metric_name].append(elapsed)

    def get_summary(self):
        return {
            'avg_integration_time': np.mean(self.metrics['integration_time']),
            'avg_atmosphere_time': np.mean(self.metrics['atmosphere_lookup_time']),
            'cache_hit_rate': self.metrics['cache_hits'] /
                             (self.metrics['cache_hits'] + self.metrics['cache_misses']),
            'total_time': self.metrics['total_simulation_time']
        }
            

4.2 Optimization Recommendations

Scenario Recommended Settings Expected Performance
Single trajectory, high accuracy C extensions ON, adaptive timestep, RK8 ~5 seconds for 4-hour flight
Ensemble (100 trajectories) Parallel processing, C extensions, RK4 ~30 seconds total
Real-time prediction GPU acceleration, cached atmosphere <100ms per update
Monte Carlo (1000+ runs) Distributed computing, simplified physics ~5 minutes