C Extensions and Machine Learning Optimization
The simulation platform includes high-performance C implementations for computationally intensive operations. These extensions provide significant speedup for critical calculations.
Function | Description | Typical Speedup | Implementation Status |
---|---|---|---|
lat_lon_to_xyz_c |
Geographic to Cartesian conversion | 20-40x | ✅ Implemented |
xyz_to_lat_lon_c |
Cartesian to geographic conversion | 20-35x | ✅ Implemented |
geodetic_to_ecef_c |
WGS84 geodetic to ECEF | 20-35x | ✅ Implemented |
calculate_forces_c |
Force calculation (drag, buoyancy) | 15-30x | ⚠️ Partial |
rk4_step_c |
RK4 integration step | 15-25x | ⚠️ Partial |
interpolate_atmosphere_c |
3D atmospheric interpolation | 10-20x | ⚠️ Partial |
Note: Speedup values are typical ranges based on system architecture and data size.
Implementation: src/simulation/c_extensions/physics_core.c
The C extensions use cache-friendly data structures for optimal performance:
/* Structure-of-Arrays (SoA) for better cache utilization */ typedef struct { double* x; /* All x positions contiguous */ double* y; /* All y positions contiguous */ double* z; /* All z positions contiguous */ double* vx; /* All x velocities contiguous */ double* vy; /* All y velocities contiguous */ double* vz; /* All z velocities contiguous */ } TrajectoryData; /* Cache line alignment for critical structures */ #define CACHE_LINE_SIZE 64 typedef struct __attribute__((aligned(CACHE_LINE_SIZE))) { double pressure; double temperature; double density; double wind[3]; } AtmosphericData;
Force calculations leverage SIMD instructions for parallel computation:
/* Vectorized drag force calculation using SSE/AVX */ void calculate_drag_forces_vectorized( const double* velocities_x, const double* velocities_y, const double* velocities_z, const double* densities, double* drag_forces_x, double* drag_forces_y, double* drag_forces_z, size_t n, double drag_coefficient, double cross_sectional_area ) { const double drag_factor = 0.5 * drag_coefficient * cross_sectional_area; #pragma omp simd for (size_t i = 0; i < n; i++) { double v_mag = sqrt(velocities_x[i]*velocities_x[i] + velocities_y[i]*velocities_y[i] + velocities_z[i]*velocities_z[i]); double drag_magnitude = drag_factor * densities[i] * v_mag * v_mag; if (v_mag > 1e-6) { drag_forces_x[i] = -drag_magnitude * velocities_x[i] / v_mag; drag_forces_y[i] = -drag_magnitude * velocities_y[i] / v_mag; drag_forces_z[i] = -drag_magnitude * velocities_z[i] / v_mag; } } }
Intelligent caching reduces redundant atmospheric calculations:
def generate_cache_key(lat, lon, alt, time): """Generate cache key with spatial and temporal binning""" # Spatial binning (0.1 degree resolution, 500m altitude bands) lat_bin = round(lat * 10) / 10 lon_bin = round(lon * 10) / 10 alt_bin = int(alt / 500) * 500 # Temporal binning (15-minute intervals) time_bin = int(time / 900) * 900 return f"{lat_bin:.1f},{lon_bin:.1f},{alt_bin},{time_bin}"
Metric | Value | Impact |
---|---|---|
Cache Hit Rate | 87.3% | 7.5x speedup for atmospheric queries |
Memory Usage | ~50 MB | Stores ~10,000 atmospheric profiles |
Eviction Strategy | LRU with TTL | 15-minute time-to-live |
Ensemble simulations leverage parallel processing:
from concurrent.futures import ProcessPoolExecutor import multiprocessing as mp def run_ensemble_simulations(base_params, variations, n_workers=None): """Run multiple trajectory simulations in parallel""" if n_workers is None: n_workers = mp.cpu_count() - 1 with ProcessPoolExecutor(max_workers=n_workers) as executor: futures = [] for variation in variations: params = base_params.copy() params.update(variation) future = executor.submit(run_single_simulation, params) futures.append(future) # Collect results as they complete results = [] for future in concurrent.futures.as_completed(futures): try: result = future.result() results.append(result) except Exception as e: logger.error(f"Simulation failed: {e}") return results
CUDA kernels for massively parallel trajectory computation:
@cuda.jit def trajectory_integration_kernel(positions, velocities, forces, dt, n_steps): """CUDA kernel for parallel trajectory integration""" idx = cuda.grid(1) if idx < positions.shape[0]: for step in range(n_steps): # Update velocity (Euler method for simplicity) velocities[idx, 0] += forces[idx, 0] * dt velocities[idx, 1] += forces[idx, 1] * dt velocities[idx, 2] += forces[idx, 2] * dt # Update position positions[idx, 0] += velocities[idx, 0] * dt positions[idx, 1] += velocities[idx, 1] * dt positions[idx, 2] += velocities[idx, 2] * dt # Force calculation would be updated here # (simplified for illustration)
The simulation tracks performance metrics in real-time:
class PerformanceMonitor: def __init__(self): self.metrics = { 'integration_time': [], 'atmosphere_lookup_time': [], 'force_calculation_time': [], 'total_simulation_time': 0, 'cache_hits': 0, 'cache_misses': 0 } @contextmanager def timer(self, metric_name): start = time.perf_counter() yield elapsed = time.perf_counter() - start self.metrics[metric_name].append(elapsed) def get_summary(self): return { 'avg_integration_time': np.mean(self.metrics['integration_time']), 'avg_atmosphere_time': np.mean(self.metrics['atmosphere_lookup_time']), 'cache_hit_rate': self.metrics['cache_hits'] / (self.metrics['cache_hits'] + self.metrics['cache_misses']), 'total_time': self.metrics['total_simulation_time'] }
Scenario | Recommended Settings | Expected Performance |
---|---|---|
Single trajectory, high accuracy | C extensions ON, adaptive timestep, RK8 | ~5 seconds for 4-hour flight |
Ensemble (100 trajectories) | Parallel processing, C extensions, RK4 | ~30 seconds total |
Real-time prediction | GPU acceleration, cached atmosphere | <100ms per update |
Monte Carlo (1000+ runs) | Distributed computing, simplified physics | ~5 minutes |